
- ECUR T Y C LAS~j F I CA :LN OF TH IS PAGE (When 04t. E~re'ecsl . :

REPORT DOCUMENTATION PAGE -o zn'r, rim
I. REPORT NUMBER 1Z. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

A. TITLE (andSubtsrle) S. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: InterAct 15 July 1988 to I, T',y 198
Corporation, InterAct Ada 1750A Compiler System, Release
3.0 VAX 11/785 (Host) to Fairchild F9450/1750A (Target) .

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

National Bureau of Standards
Gaithersburg, MD

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

In (National Bureau of
Standards

0 Gaithersubrg, MD

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ada Joint Program Office
United States Department of Defense 13. NUMocH W PAwS

IO Washington, DC 2 301-3081

14. MONITORING AGENCY NAME L ADORESS(IfdifferentfromControlhngOffice) I5. SECURITY CLASS 'ofthsreport)
UNCLASSIFIED

National Bureau of Standards iSa. USFICATION/AOWNGRADING

Caithersuburg, M . N/A
15. DISTRIBUTION STATEMENT (ofthasReporn

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEME NT (of the absfracI entered in Block 20 If oifferent from Report)

UNCLASSIFIED TC
18. SUPPLEMENTARY NOTES 71988

19. KEYWORDS (Continue on reverse side ifnecessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary nd identify by block number)

InterCT Ada 1750A Compiler System, Release 3.0, InterACT Corporation, National Bureau

of Standards, VAX 11/785, VIS, Version 4.5 (Host) to Fairchild F9450/1750A, none, none,

ACVC 1.9

00)u,, 1473 EDITION OF I NOV 85 IS OBSOLETE

I JAN 73 S/N 0I02-LF 014-601 UNCLASSIFIED
SECUIIIII ASSIFICAT OF TMIS PAG4.(Wen f

AVF Control Number: NBS88VACT520

Ada Cailer
VALIDATON SU21AMRY POI:

Certificate Number: 880715S1.09153
InterACT Corporation

InterACr Ada 1750A Ccmpiler System, Re2lea-e 3.0
VAX 11/785 Host, Fairchild F9450/1750A Target

Completion of On-Site Testing:
15 July 1988

Prepared By:
Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

Building 225, Rocm A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office

United States Departnt of Defense
Washington, D.C. 20301-3081

I

Ada Ccmpiler Validation Summary Report:

Compiler Name: InterACT Ada 1750A Compiler System, Release 3.0

Certificate Number: 880715S1.09153

Host: Target:
VAX 11/785 Fairchild F9450/1750A
VDS, •none,
Version 4.5 none

Testing Ccmpleted 15 July 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility
Dr. David K. Jefferscn
aiief, Information Systis
Engineering Division
National Bureau of Standards
Gaithersburg, MD 20899

a Validaticn Organization
Dr. Jchn F. Kramer
Institute for Defense Analyses
Alexandria, VA 22311

Ada Joint Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

TABLE OF COTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF TS VALIDATION SUMMARY REPRT' 1-2
1.2 USE OF =I4S VALIDATION SUM1MARY REPORT1-2
1.3 ERENCES :... :........ 1-3
1.4 DE =iTION OF TE 1-3
1.5 ACVC TEST CLASSES1-4

CHAPER 2 CONFIGURATION INFORMATION

2.1 ONFIGURATION TESTED 2-1
2.2 IMPlENTATION CHARACTERISTICS2-2

CHPR 3 TEST INFORZMATION

3.1 TEST RESULTS....... 3-1
3.2 SUMMRY OF TEST RESULTS BY CLASS 3-1
3.3 SUIMMARY OF TEST RESULTS BY CHPTER3-2
3.4 WI1iERAN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PICESSING, AND EVAUATION MODIFICATIONS . . 3-4
3.7 ADDITICNAL TESTING INFO04ATION3-5
3.7.1 Prevalidation3-5
3.7.2 Test Method3-5
3.7.3 Test Site3-6

APPENDIX A CCNFCRMANC STAT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

Accession For

APPENDIX D WITHDRAWN TESTS I NTIS r,2A&I

un 11': 1 cc Cl

A i t i j; ./ f

1 st

This Validation Summary Report 5(VMR describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this ccmpiler using the Ada Compiler
Validation Capability _ An Ada compiler must be implemented
according to the Ada Standard, and any implementatin-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.~

-Even though all validated Ada ccmpilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits sce implementation
dependencies-for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between ccmpilers
result from the characteristics of particular operating systems,
hardware, or iplementation strategies. All the dependencies observed
during the process of testing this copiler are given in this report.'

This information in this report is derived frcm the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACOC, as inputs to an Ada
cczriler and evaluating the results. -, The purpcse of validating is to
ensure conformity of the ccpiler to the Ada Standard by testing that
the ccmpiler prcperly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementaticn dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at ccmpile time, at link time, and during
execution. /,

1. 1 PURPOSE OF TIS VALIATION SUM4MARY REP=

This VSR documents the results of the validation testing performed on an
Ada ccumpiler. Testing was carried cut for the following purposes:

To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

Testing of this ccmpiler was conducted by the National Bureau of
Standards according to policies and procedures established by the Ada
Validation Organization (AVO). On-site testing was completed on 16 July
1988 at InterACT Corporation, New York, New York.

1.2 USE OF TIS VAL1ITION SUMZMY REPOFG

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedcm of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and ccmpiler versions identified in
this report.

The organizations represented cn the sigrat=zr page of this report do
not represent or warrant that all statements set fort-h in this report
are accurate and complete, or that the subject ccpiler has no
noncnformities to the Ada Standard other than those presented. Ccpies
of this report are available to the public from:

Ada Informaticn Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagcn, Rm 3D-139 (Fern Street)
Washingtcn DC 20301-3081

or frcm:

Software Stardards Validation Group
Institute for Comuter Sciences and Technology
National Breau of Standards
Building 225, Room A266
Gaithersburg, Mariland 20899

1-2

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Deferze Analyses
1801 North Beauregard Street
Alexandria VA 22311

1. 3 PEFERENCES

1. Reference Manual for the Ada Proramnis Laruage,
ANSI/MIL-SID-iISiA, rebruary 1983 and ISO 8652-1987.

2. Ada Ccriler Validaticn Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Ccm~iler Validation Capability Ihvpelnters' Guide.,
December 1986.

1.4 DEFTI'ION OF TBIS

ACVC The Ada Ccpiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada Ccmmentary An Ada Commentary contains all information relevant to
the point addressed by a ccmnent cn the Ada Standard.
These comments are given a unique identification nmiber
having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible tor
conducting cmpiler validations according to procedures
contained in the Ada Ccmpiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. Te AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

1-3

Campiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
iznterpreters.

Failed test An ACVC test for which the cmpiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The ccumpter on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test ccmipiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Language The Language Maintenance Panel (IMP) is a comittee
Maintenance established by the Ada Board to recommend

interpretations and Panel possible changes to the
ANSI/ICL-STD for Ada.

Passed test An ACVC test for which a ccmpiler generates the expected

result.

Target The computer for which a ccmpiler generates code.

Test An Ada program that checks a compiler's conformity
regarding a particular feature or a ccmbination of
features to the Ada Stardard. In the context of this
report, the term is used to designate a single test,
which may cmprise one or more files.

:ithdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid tasm cbjective, fails to meet
its test cbjective, or ccntains ill eqal or erronecus use
of the language.

1.5 ACJC TEST CLASSES

Conformity to the Ada Standard is measured using the ACIC. The ACVC
contains both legal and illegal Ada prograns stuc-ared into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
ccpilation errors. Class L tests are expected to produce ccnpilation
or link errors.

Class A tests check that legal Ada programs can be successfully ca, iled
and executed. There are no explicit program canponents in a Class A

1-4

test to check semantics. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada c mpiler.
A Class A test is passed if no errors are detected at ccapile time and
the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting ccnpilaticn listing is examined to verify that every
syntax or semantic error in tUe test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the ccmilation and execution capacities of a
ccnpiler. Since there are no capacity requirements placed on a cczpiler
by the Ada Standard for some parameters-for example, the number of
identifiers permitted in a ccmpilation or the number of units in a
library-a compiler may refuse to ccmpile a Class D test and still be a
conforming ccmpiler. Therefore, if a Class D test fails to ccmpile
because the capaci.ty of the ccmpiler is exceeded, the test is classified
as inapplicable. If a Class D test ccmpiles successfully, it is
self-checking and produces a PASSED or FAIED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an inplmrentation to reject programs containing
scme features addressed by Class E tests during ccmpilaticn. Therefore,
a Class E test is passed by a compiler if it is ccmpiled successfully
and executes to produce a PASSED message, or if it is reject-d by the
ccpiler for an allcwable reason.

Class L tests check that incomiplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link timt--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPC&R and the procedure CIE=< FILE,
suport the self-<checking features of the executable tests. The package
REPCRT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that wculd circumvent a test objective. The procedure aiEC
FILE is used to check the contents of text files written by some of the
Class C tests for chapter 14 of the Ada Standard. The operation of

1-5

Pfl'O and CH=IE is cheked by a set of exectabIe tests. hese
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attenpted.

The text of the tests in the AC.C follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maxintum length of 72 characters, .se small ntmeric
values, and place features that may not be supported by all
implementations in separate tests. However, scme tests contain values
that require the test to be customized according to
implemetation-specific values-for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demcnstrate ccnformity to the Ada Stardard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn frm the ACVC and, therefore, is not used in testing a
ccmpiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-6

CHATER 2

ONFIGUATION IIFORMTION

2.1 CONFIGURATION TE)

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: InterACT Ada 1750A Compiler System, Release 3.0

ACVC Version: 1.9

Certificate Number: 880715SI.39153

Host Comuter:

Machine: VAX 11/785

Operating System: VMS
Ve7.-sion 4.5

Memory Size: 16 MB

Target Computer:

Machine: Fairchild F9450/1750A

pe-rating System: none

Memory Size: 64 KB

Ccmrications Network: VAX/64000 Interface Soft".,re

The A.C.T. Ara cT-piler and linker run on VAX/VMS and produce 1750A load
module files on the VAX. These load modules are in ACT 1750A Linker
for-a. An ACT prcprietar tool, ADA_ -H, is then run on the VA< to
produce load modules files in Helet Packard (HP) 64000 format. HP's
VAX/64000 interface software is then used to transfer the load module to
the HP 64000 Workstation, containing the 1750A chip (a Fairchild 9450),
run the load module on the 1750A processor, and then transfer output
from the run back to the host VAX. This transfer-run-transfer sequence
is entirely under VAX/VMS control and requires no mnal intervention at

2-1

the workstation. The output produced during a run is created using
64000 simulated disk I/O. A HP 64286A Ballation Probe with a 64271/AB
control board is used to house the 1750A chip. Tis, unit is attached to
the HP 64000 Workstation.

2.2 I Pt =TION CHARACTERISICS

One of the purposes of validating ccrpilers is to determine the behavior
of a ccmpiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an inplementation. The tests demonstrate the following
characteristics:

- Capacities.

The ccpiler correctly processes tests containing locp
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately ccpiled as subunits
nested to 10 levels. It correctly processes a ccpilation
containing 723 variables in the same declarative part. (See
test D55A03A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

- Universal integer calculations.

An inplementation is allowed to reject universal integer
calculations having values that exceed SYSTE.MAXINT. This
inplemntation processes 64 bit integer calculations. (See tests
D4AQ02A, D4A002B, D4AO04A, and 04A004B.)

- Predef ined t-ypes.

This irplementation supports the additional predefined types
LCNG_INTBMEG and WCNG FLCAT in the package STANDARD. (S. e
tests B8600lBC and B86001D.)

- Based literals.

An inplementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX =fT during ccpilation, or it may
raise NLUEIC ERRCR or CCN.I1AINT ERRR during execution. This
Azplementation raises NUZERIC_ErRMR during execution. (See test
E24101A.)

2-2

- Expression evaluation.

Apparently all default initialization expressions or record
caponents are evaluated before any value is checked to belong
to a cmponent's subtype. (See test C32117A.)

Assignments for subtypes are performed with less precision than
the base type. (See test C35712B.)

This inplementation uses no extra bits for extra precision.
This plementation uses all extra bits for extra range. (See
test C35903A.)

Apparently NL14ERIC_EIRR is raised when an integer literal
operand in a ccnparison or renbership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMEIC_ERR)R is raised when a literal cperani in a
fixed-point ccnparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

- RPurdin.

The method used for rounding to integer is apparently round away
fro~m zero. (See tests C46012A..Z.)

The method used for rourding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressicrs is apparently rcund away frcm zero. (See test
C4AOl4A.)

- Array tipes.

An ihlementaticn is allowed to raise NLEC ERROR or
CCNSTRAINT EPRCR for an array having a 'LENGIM that exceeds
STANDARD. INTEGER' LAST and/or SYST 4.MAX_NTl. For this
implementatioi i:

NUMERICERI;CR is raised when 'L2MH is applied to an array type
with IDn 'LAST + 2 components. (See test C36202A.)

NL% =CERRCR is raiscd when 'L1JI i is applied to an array type
with SY=.MX_IlT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'M I exceeding IRI 'LAST
raises NL74ERIC_EFWR when the array objects are declared. (See
test C52103X.)

2-3

A packed two-dimensional BOOLEAN array with more than
INTEER' LAST camonents raises N.MERICERR when the array
subtypes are declared. (See test C52104Y.)

A null array with one dimension of length greater than
INIE2ER' LAST may raise NUMERIC_ERROR or COhUSI TERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assiani ts. This =mplenntation raises NUZERIC_ERROR
when the array type is declared. (See test E52103Y.)

In assigning one-dinensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINtERROR is
raised when checking whether the expression's sdbtype is
compatible with the target's subtype. In assigning
tnw-dinensional array types, the expression does not appear to
be evaluated in its entirety before CCNSTRAIT _ERROR is raised
when checking whether the expression's subtype is ccnpatible
with the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incciplete type with discriminants that is
used in an access type definition with a ccmpatible discriminant
constraint. This implementation accepts such subtype indications
indications during ccrpilation. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CCNSTRA]I ERROR
is raised when checking whether the expression's subtype is
ccmatible with the target's subtype. (See test C52012A.)

- Aggregates.

In the evaluation of a uulti-dimensional aggregate, index
subtype checks appear to be made as choices are evaluated. (See
tests C43207A ard C43207B.)

In the evaluation of an aggregate ccntaining subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before ENSTPAINERPR is raised if a
bound in a ncnnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

2-4

- Representation clauses.

An implementaticn might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is not supported, then the impleentation
must reject it.

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character ard boolean
types are supported. (See tests C355021..J, C35502M..N, and
A39005F.)

EnuTmeration representation clauses containing nor&nti-Uus
values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, IME => 1) are
not supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are not supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with SMRAGE SIZE specifications for task types
are supported. (See tests A39005D and C37B62D.)

length clauses with &MLL specifications are supported. (See
tests A39005E and C87B62C.)

Record rsoresentaticn clauses are surported, hcwever the
alignment clause is not supported. (See test A39005G.)

lengt-h clauses with SiZE specificaticns for derived integer
types are not supported. (See test C37B62A.)

- Pragmas.

The pragma fI is not supported for procedures. The pragma
INLINE is not supported for functions. (See tests A3004A,
LA3004B, EAJ004C, EA3004D, CA3004E, and CA3004F.)

- Input/output.

The package SEQUMIfALI0 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, EE2201D, and EE220IE.)

2-5

The package DIRECT_10 can be instantiated with urin-trained
array types and record types with disiminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

The director, AJTO, has determine (AI-00332) that every call to
OPEN and CREATE =ist raise USE ERRR or NAME ERROR if file
input/output is not supported. -hs irplementation exhibits
this behavior for SEQIITLIO, DIRECTIO, and TEX= 10.

- Generics.

Generic subprogram declarations and bodies can ccupil in
separate ccmpilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be carpiled in
separate ccmpilations. (See tests CA2009C, BCM204C, and
BC3205D.)

Generic unit bodies and their subunits can be cmpiled in
separate compilations. (See test CA3011A.)

Generic must be coirpiled before thei:,aP4 are
instantiated.

2-6

C19d)TER 3

TEST flF@ IN

3. 1 TEST RESULT

Version 1.9 of the ACVC ccmprises 3122 tests. Mhen this cciler was
tests, 28 tests had been withdrawn because of test errors. The AVF
determined that 507 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
Modifications to the code, processing, or grading for 10 tests were
required to successfully demonstrate the test objective. (See section
3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RFSUS BY CLASS

RESULT TEST CASS TOTAL
A B C D E L

Passed 107 1048 1360 16 11 45 2587

Inapplicable 3 3 493 1 6 1 507

Withdrawn 3 2 21 0 2 0 28

TOTL 113 1053 1874 17 19 46 3122

3-1

3.3 SUMMARY OF TEST RESLTS BY CHAPTER

RESULT CEPE =O-AL
2 3 4 5 6 7 8 9I0 I 12 13 14

Passed 184 462 490 245 164 98 139 326 132 36 233 3 75 2587

Inapplicable 20 110 184 3 1 0 4 1 5 0 1 0 178 507

Withdrawn 2 14 3 0 1 1 2 0 0 0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WIT2AN TESTS

The following 28 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35A03E C35A03R C37213H C37213J C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C E66001D A74106C C35018B C87B04B CC1311B
BC3105A AD1A01A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESIS

Scme tests do not apply to all ccmpilers because they make use of
features that a ccmpiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
ipplemntation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 507
test were inapplicable for the reasons indicated:

C35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for derived types which are not supported by this
compiler.

C35702A uses SHCRTFLOAT which is not supported by this implementation.

3-2

C35A06N ccmpiled code exceeds the 64K memory capability of the target.

C36003A type declaration exceeds the capability of the ccmpiler.

A39005B and C87B62A use length clauses with SIZE specifications which
are not supported by this cumpiler.

C87B62B defines an access type's collection size using a length clause,
where the length clause value is the collection size of another access
type that does not have a collection size length clause. The compiler
defines collection size in the latter case as arbitrarily large; as a
consequence, the attet to use it in a collection size length clause
raises SIORAGE_ERROR, as an arbitrarily large object cannot be allocated
by the capiler (the limit is 32K words).

A39005G uses an alignment clause which is not sApported by this
campiler.

The following (14) tests use SHORfINTEGER, which is not supported by
this compiler.

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D

C45231D requires a macro substitution for any predefined nnieric types
other than = =, SHOR U , LONG fNl _ , FLOAT, SHORT FLOAT, and
LONG_FLOAT. This ccmpiler does not support any such types.

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are niot supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point
base tApes which are not supported by this ccmpiler.

D64005G ccmpiles successfully but does not link in the 64K memory
capabilit1 of the target.

B86001D requires a predefined numeric type other than those defined by
the Ada language in package MANDARD. There is no such type for this
implementation.

C36001F redefines package SY=, but TEXTIO is-made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package T=rIO.

C96005B reuires the range of type URATION to be different from those
of its base type; in this inplementation they are the same.

3-3

CA2009C and CA2009F instantiate generic units before the units' bodies
are cctopiled. This copiler reuires that such bodies be campiled
before the unit is instantiated.

CA3004E, EA3004C, and LA3004A use the DLINE pragma for procedures,
which is rit supported by this compiler.

CC1221A ccmpiles successfully but does not link in the 64K memory
capability of the target.

The following 178 tests are inapplicable because sequential, text, and
direct access files are not supported.

CF2102C C22102G. .H(2) CE2102K CE2104A..D(4)
CE2105A..B(2) 2106A..B(2) CE2107A..I(9) CE2108A. .D(4)
CE2109A..C(3) CE2 110A. .C(3) CE2111A..E(5) =2111G..H(2)
C22115A..B(2) CE2201A..C(3) EE2201D..E(2) CE2201F..G(2)
CE2204A. .B(2) CE2208B CE2210A CE2401A..C(3)
EE2401D CE2401E..F(2) EE240IG CE2404A
CE2405B C2406A CE2407A CE2408A
CF2409A CE2410A --2411A AE3101A
3102B EE3102C CE3103A CE3104A

CE3107A CE3108A. .B(2) CE3109A M3110A
CE3111A..E(5) CE3112A..B(2) CE3114A..S(2) CE3115A

CE3203A CE3301A..C(3) CE3302A CE3305A
CE3402A..D(4) CE3403A..C(3) =3403E..F(2) CE3404A..C(3)
CE3405A..D(4) c-3406A..D(4) CE3407A..C(3) CE3408A..C(3)
CE3409A E3409C..F(4) CE3410A CE3410C. .F(4)
C3411A CE3412A M3413A C3413C
CE3602A..D(4) CE3603A CE3604A CE3605A..E(5)
CE3606A..B(2) CE3704A..B(2) CE3704D..F(3) CE3704M..0(3)
CE3706D C3706F CE3804A. .E(5) C3804G
(3 804 13804K CE3804M CZ2805A.. B(2)
C3806A cE806D..E(2) CE3905A..C(3) C3905L
C,3906A..C(3) CE3906E..F(2)

The follcwing 285 tests require a floating-point accuracy that exceeds
the maxim= of 9 digits supported by this implementation:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F .. Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

3.6 TEST, PROCESSING, AND EVAATION MODIFICATIONS

It is expected that scme tests will require modifications of code,

3-4

processing, or evaluation in order to carpensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Eamples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 10 Class B tests.

The following Class B tests were split because syntax errors at one
point resulted in the ccpiler not detecting other errors in the test:

B33301A B55AOA B67001A B67001C B67001D
BA1I01B2 BA1I01B4 BC1109A BC1109C BC1!09D

3.7 ADDITIONAL TESTING INFOMTION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the InterACT Ada 1750A Ccpiler System was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the InterACT Ada 1750A Ccmpiler System using ACVC Version 1.9
was ccnducted on-site by a validation team from the AVF. The
configuraticn consisted of a VAX 11/785 cperating under VMS, Version 4.5
and a Fairchild F9450/1750A withcut an cperating system. The host and
target ccnputars were linked via VAX 64000 Interface Soft-ware using the
HP 64000 Workstaticn.

A magnetic tape containing all tests was taken on-site by the validation
team for processing. Tests that make use of implementation-specific
values were custcmized on-site after the magnetic tape was loaded.
Tests requiring modifications during the prevalidaticn testing were not
included in their modified form on the magnetic tape. The contents of
the magnetic tape were not loaded directly onto the host camputer.

After the test files were loaded to disk, the full set of tests was
ccmpiled and linked on the VAX 11/785, and all executable tests were run
on the Fairchild F9450/1750A. Object files were linked on the host
computer, and executable images were transferred to the target canputer
via VAX 64000 Interface Software. Results were printed from the host
ccrputer, with results being transferred to the host compiter via VAX

3-5

64000 Interface Software.

The compiler was tested using command scripts provided by InterACr
Corporation and reviewed by the validation team. The oarpiler was
tested using all default switch settings.

Tests wexre cmpiled, linked, and executed as appropriate using a single
host computer and a single target conputer. Test output, coupilation
listings, and job logs were captured on magnetic tape and archived at
the AVF. The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at InterACT Corporation, New York, New York and
was completed on 16 July 1988.

Testing was performed in a mixed batch mode with other on-going

processes.

3-6

'S APPENIDIX A

DECLARATION OF CWMO1%NCE

A-1

Appendix A

DECLARATION OF CONFORMANCE

Compiler Implementer: InterACT Corporation
Ada Vali dation Fact Iity: National Bureau or Standaras
Ads Compl er Va idation Capabi I ity (ACVC) Version: •_I. _

Base Configuration

Base Compiler Name: interACT Ada!750A Comoiler System Release 3.0
Host Architecture - ISA: "AX 11/7,95 OS&VER 2: VMS 4.5
Target Architecture - ISA: Fairrhild q450/ OS&VER 2: bare machine

1750A
Derived Compiler Registration

Der ived Compiler Name: TnteprACT Ad.1750A Compiler System R .. se 3.0
Host Architecture - ISA:Anv VAX seriesOS&VER U: a.3 or nreater
Target Architecture - ISA:Anv SEAFAC OS&VER V: No OS reauired

certified 1750A
Impl Iementer 'a Declrat ion

I, the undersigned, representing InterACT Coro. have
implemented no del iberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) listed In this declaration.
I declare that TntprACT Cor2. Is the owner of record of
the Ada language compller(s) listed above and, as such, Is
responsible for maintaining said compiler(s) In conformance to
ANSI/MIL-STO-18ISA. All certificates and registrations for Ada
language complier(s) Isted In this declaration shall be made
only In t he ownerf 9 r t

____________~

Owner's Declaration

I, the undersigned, reoresenting r n r r-rl. take full
responsibility for Implement3tion and maintenance of the Ada
complier(s) listed above, and agree to the public disclosure of
the final ValIdation Summary Report. I further agree to continue
to comply with the Ada trademark pol icy, as defined by the Ada
Joint Program Office. I declare that all of the Ada language
compilers I Isted. and t heir hzr t---lar-get -per-4ormance al1r in
compliance with the Ada Language Standard ANSI/MIL-STO-1815A. I
have reviewed the Validation Summary Report for the compiler(s)
and concur with the corntanta.

This document Is part of the Val Idation." Su.mmary Report (VSR).
Appendix A, for Initial validations and must be submitted for
each derived complier registration durIng or subsequent to
initial validation.

APPEDI B

APPENDIX F OF THE Ada SNEARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Stardard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the InterACI Ada 1750A
Campiler System, Release 3.0, are described in the following sections
which discuss topics in Appendix F of the Ada Stardard. Implontation-
specific portions of the package STANMD are also included in this
appendix-

package STANDARD is

type INTEGER is range -32_768 .. 32_767;

type LCNG DIT E is range -2_147483648 .. 2147483647;

type FLOAT is digits 6 range -1.0*2.0**127 ..
0.999999*2.0**127;

type LCNGFL2AT is digits 9 range -1.0*2.0**127 ..
0.999999*2.0**127;

type ELTPTICN is delta 2**(-14) range -131_072.0 .. 131_071.0;

end STANDARD;

B-1

Appendix F
Appendix F of the Ada Reference Manual

This appendix describes all implementation-dependent characteristics of the Ada language as implemented by
the InterACT Ada 1750A Compiler, including those required in the Appendix F frame of Ada RM.

F.I. Predefined Types in Package STANDARD

This section describes the implementation-dependent predefined types declared in the predefined package
STANDARD (Ada PMAnnex C], and the relevant attributes of these types.

Integer Types

Two predefined integer types are implemented, INTEGER and LONGINTEGER. They have the following
attributes:

INTEGER'FIRST -32 768
INTEGER'LAST 32 767
INTEGER'SIZE 16

LONG _NTEGER'FIRST -2 147 483 648
LONG INTIEGER'LAST = 2 147 483 647
LONG INTEGER'SIZE - 32

Floating Point Types

Two predefined floating point types are implemented, FLOAT and LONG-FLOAT. They have the following
attributes:

FLOAT'DIGITS - 6
FLOAT'EPSILON - 9.53674316406250E-07
FLOAT'FIRST -1.0 * 2.0"127
FLOAT'LARGE - 1.93428038904620E 25
FLOAT"LAST - 0.999999 * 2.0"127

FLOAT"MACHINE EMAX - 127 -

FLOATMACHINE EMIN = -128
FLOATMACHINE MANTISSA = 23

F-2 Appendix F of the Ada Reference Manual

FLOAT"MACHINE OVERFLOWS TRUE
FLOATMACHINE-RADIX - 2
FLOATMACHINE-ROUNDS - FALSE

FLOAT'MAINTISSA - 21

FLOAT'SAFE EMAX = 127

FLOAT'SAFE LARGE = FLOAT'LAST
FLOAT'SAFE SMALL - 0.5 -2.0*(-127)
FLOAT'SIZE = 32

LONG FLOAT'DIGITS = 9
LONG-FLOAT'EPSILON 9-31322574615479E-10
LONG FLOAT'FIRST = -1.0 0 2.0*127

LONG FLOAT'LARGE = 2.0** 124*(1.0-2.0"(-31))
LONG-FLOAT'LAST = .99999999* 2.0**127

LONG FLOAT'MACHINE EMAX= 127
LONG FLOAT'MACHINE EMIN = -128

LONG-FLOAT',MACHINE-MANTISSA = 39
LONG FLOAT'MACHINE OVERFLOWS = TRUE
LONG FLOAT'MACHINE RADIX = 2
LONG FLOAT'MACHINE ROUNDS = FALSE
LONG FLOAT'MANTISSA = 31

LONG FLOAT'SAFE ENMAX = 127

LONG FLOAT'SAFE LARGE - LONG FLOAT'LAST
LONG FLOAT'SAFE SMALL = 0.5 - 2"(-127)

LONG FLOAT'SIZE = 48

Fixed Point Types

Two kinds of anonymous predefined fixed point types are implemented: fixed and longjfixed. Note that these
names are not defined in package STANDARD, but are used here only for reference.

For objects offixed types, 16 bits are used for the representation of the object. For objects of longjfixed types,
32 bits are used for the representation of the object.
For fixed and long_fixed there is a virtual predefined type for each possible value of small [Ada PF3 3.5.9]. The

possible values of small are the powers of two that are representable by a LONG-FLOAT value.

The lower and upper bounds of these types are:

lower bound of fixed types -32768 *small

upp-erbouh-d-offixed types 32767 * small
lower bound of tongjixed types = -2 147 483 648 snall.-

upper bound of long_fixed types = 2_147 483_647 * small

A declared fixed point type is represented as that predefinedfixed or long fixed type which has the largest value

of small not greater than the declared delta, and which has the smallest range that includes the declared range
constraint. -

Any fixed point type T has the following attributes:

TMACHINE OVERFLOWS = TRUE
T'MACHINE ROUNDS = FALSE

Type DURA\TION

Appendix F of the Ada Reference Manual F-3

DURATION'AFT 5
DURATION'DELTA = DURATION'SMALL
DURATION'FIRST = -131 072.0
DURATION'FORE 7
DURATION'LARGE = 131071999938965E05
DURATION'LAST 131 071.0
DURATION'MANTISSA 31
DURATION'SAFE LARGE = DURATION'LARGE
DURATION'SAFE-SMALL DUATION'SMALL
DURATION'SIZE = 32
DURATION'SMALL = 6.1035156250000E-05 2"*(-14)

F.2. Pragmas

This section lists all language-defined pragmas and any restrictions on their use and effect as compared to the
definitions given in Ada RM.

Pragma CONTROLLED

This pragma has no effect, as no automatic storage reclamation is performed before the point allowed by the
pragma.

Pragma ELABORATE

As in Ada RM.

Pragma INLINE

This pragma causes inline expansion to be performed, except in the following cases:

1. The whole body of the subprogram for which inline expansion is wanted has not been seen. This
ensures that recursive procedures cannot be inline expanded.

2. The subprogram call appears in an expression on which conformance checks may be applied, i.e., in a
subprogram specification, in a discriminant part, or in a formal part of an entry declaration or accept
statement.

3. The subprogram is an instantiation of the predefined generic subprograms
UNCHECKED CONVERSION or UNCHECKED DEALLOCATION. Calls to such subprograms
are expanded inline by the compiler automatically.

4. The subprogram is declared in a generic unit. The body of that generic unit is compiled as a secon-
dary unit in the same compilation as a unit containing a call to (an instance o0 the subprogram.

5. The subprogram is declared by a renaming declaration.

6. The subprogram is passed as a generic actual parameter.-

A warning is given if inline expansion is not achieved.

Note that the primary optimizing effect of this implementation of inline expansion is the elimination or reduc-
tion of parameter passing code, rather the reduction of basic subprogram call overhead.

F-4 Appendix F of the Ada Reference Manual

Pragma INTERFACE

This pragma is supported for the language names defined by the enumerated type INTERFACE LANGUAGE
in package SYSTEM. Languages other than BIF support Ada calls to subprograms whose bodies are written in
that language. Language BIF (for *built-in function') supports inline insertion of assembly language macro invo-
cations; the macros themselves may consist of executions of 1750A hardware built-in functions, or of any
sequence of 1750A instructions. Thus, pragma INTERFACE (BIF) serves as an alternative to machine code
insertions.

Language ASSEMBLY

For pragma INTERFACE (ASSEMBLY), the compiler generates a call to the name of the subprogram. The
subprogram name must not exceed 31 characters in length. Parameters and results, if any, are passed in the
same fashion as for a normal Ada call (see Appendix P).

Assembly subprogram bodies are not elaborated at runtime, and no runtime elaboration check is made when
such subprograms are called.

Assembly subprogram bodies may in turn call Ada program units, but must obey all Ada calling and environ-
mental conventions in doing so. Furthermore, Ada dependencies (in the form of context clauses) on the called
program units must exist. That is, merely calling Ada program units from an assembly subprogram body will
not make those program units visible to the Ada Linker.

A pragma INTERFACE (ASSEMBLY) subprogram may be used as a main program. In this case, the pro-
cedure specification for the main program must contain context clauses that will (transitively) name all Ada
program units.

If an Ada subprogram declared with pragma INTERFACE (ASSEMBLY) is a library unit, the assembled sub-
program body object code module must be put into the program library via the Ada Library Injection Tool (see
Chapter 7). The Ada Linker will then automatically include the object code of the body in a link, as it would the
object code of a normal Ada body.

If the Ada subprogram is not a library unit, the assembled subprogram body object code module cannot be put
into the program library. In this case, the user must direct the Ada Linker to the directory containing the object
code module (via the /user rts qualifier, see Section 5.1), so that the 1750A Linker can find it.

Language BIF

For pragma INTERFACE (BIF), the compiler generates an inline macro invocation that is the name of the
subprogram. The subprogram name must not exceed 31 characters in length. Subprogram parameters and
results, if any, are passed in the same fashion as for a normal Ada call (see Appendix P), except that the macro
invocation.replaces the call. No macro arguments are passed..n the-invocaion.-

A macro file must ea'st at the time of the compile containing a macro definition with the same name as the sub-
program. This macro file should have a file name that is the same as the subprogram, and a file type of mac.
The file should either be located in the current default directory, or be defined by one of twological names:
maclib, or the macro name itself. (See the InterACT 1750A Assembler and Linker User's MVfanual for a full
explanation.)

Languages JOVIAL and FORTRAN

These languages may also be specified for pragma INTERFACE, but are equivalent to language ASSEMBLY.
The compiler generates calls to such subprograms as if they were Ada subprograms, and does not do any

Appendix F of the Ada Reference Manual F-5

special data mapping or parameter passing peculiar to the InterACT JOVIAL or FORTRAN compilers.

Pragma LIST

As in Ada RM.

Pragma NIEMORY.SIZE

This pragma has no effect. See pragma SYSTEMNAME.

Pragma OPTIMIZE

This pragma has no effect.

Pragma PACK

This pragma is accepted for array types whose component type is an integer or enumeration type that may be
represented in 16 bits or less. The pragma has the effect that in allocating storage for an object of the array

type, the object components are each Packed into the next largest 2' bits needed to contain a value of the com-
ponent type. For example, integer components with the range constraint -8 .. 7 are packed into 4 bits; boolean
components are packed into one bit.

This pragma is also accepted for record types but has no effect. Record representation clauses may be used to
"pack" components of a record into any desired number of bits; see Section F.6.

Pragma PAGE

As in Ada &V.

Pragma PRIORITY

As in Ada RM. See the Ada I7SCA Runtinie Executive Programmer's Guide for how a default prioriry may be
set.

Pragma SHARED

This pragma has no effect, in terms of the compiler (and a warning message is issued). However, based on the
current method of code generation, the effect ot pragma SHARED is automatically achieved for all scalar and
access objects.

Pragma STORAGE-UNIT

This pragma has no effect. See pragma SYSTEM NAME.

Pragma SUPPRESS

Only the "identifier" argument, which identifies the type of check to be omitted, is allowed. The "[ON = >

name' argument, which isolates the check omission to a specific object, type, or subprogram, is not supported.

Pragma SUPPRESS with DIVISION CHECK and OVERFLOW-CHECK has no effect. However, through
runtime executive customizations (see the Ada 1750A Runtime Executive Programmer's Guide), the overflow
interrupts that are used to implement those checks may be masked. Pragma SUPPRESS with ail other checks
results in the corresponding checking code not being generated.

F-6 Appendix F of the Ada Reference Manual

Pragma SYSTEM NAME

This pragma has no effect. The only possible SYSTEM NAME is MIL STD1t750A. The compilation of
pragma MEMORYSIZE, pragma STORAGE-UNIT, or this pragma does not cause an implicit recompilation
of package SYSTEM.

FJ. Implementation-dependent Pragmas

F.3.1. Program Library Basis Pragmas

Certain pragmas defined by this Compiler System apply to Ada programs as a whole, rather than to individual
compilation units or declarative regions. These pragmas are
NO DYNAMIC OBJECTS OR VALUES USED, I
NO DYNAMIC MULTIDIMENSIONAL ARRAYS USED, andi
SET MACHINE OVERFLOWSFALSEFOR ANONYMOUSFIXED. I

These pragmas apply on a program library wide basis, and thus apply to any and all programs compiled and
linked from a given program library. The meanings of these pragmas is described in the subsections below;, the
way in which these pragmas are specified is described in this subsection.

These pragmas may only be specified within the implcmentation-defined library unit LIBRARY PRAGIMAS,
which in turn may only be compiled into the Compiler System predefined library. If either of these restrictions
are not honored, the pragmas have no effect.

The contents of this library unit when delivered are

package LIBRARYPRAGMAS is

NO.OYNAMIC OBJECTS ORVALUES USED : constant BOOLEAN := FALSE;

NO DYNAMICMULTIDIMENSIONAL ARRAYSUSED : constant BOOLEAN := FALSE;

SET MACHINE OVERFLOWS FALSE FOR ANONYMOUS FIXED : constant BOOLEAN FALSE;

end LIBRARYPRAGMAS;

In order to specify any or all of the pragmas, the source for this package is modified to include the pragmas
after the constant declarations (the source file is defined by the logical name actada librarypragmas). For
example,

._packageLIBRARY PRAGMAS is .. I

NODYNAMICCBJECTSOR VALUESUSED : constant BCOLEAN := EALSE;

NO DYNAMICMULTIDIMENSIONAL ARRAYSUSED : constant BOOLEAN := FALSE;

SETMACHINE OVERFLOWS FALSEFORANONYMOUSFIXED : constant BOOLEAN FALSE;

pragma NODYNAMICOBJECTSORVALUESUSED;.

pragma SETMACHI NEOVERFLOWSFALSE FOR ANONYMOUSF IXED;

end LIBRARYPRAGMAS;

Appendix F of the Ada Reference Manual F-7

This modified source is then compiled into the predefined library. To do this, unit LIBRARY PRAGMAS
must first be unlocked via Ada PLU (see Chapter 3).

In addition to the effects described in the subsections below, the pragmas have the effect of changing the initiali-
zation value to TRUE for the corresponding constant objects.

If unit LIBRARY PRAGMAS is modified and compiled by the user, it must be compiled before any oter user
compilation unit. If it is not, the program will be erroneous.

Note that while these pragmas apply to an entire program library, it is possible to create more than one pro-
gram library (via the Ada PLU comman'i create/root; see Chapter 3), with each library having these re~na I
specified or not according to user desire.

F.3.2. Pragma NODYNAMvllC_OBJECTSORVALUES USED

This pragma works on a program library basis. See the subsection at the beginning of this section for how such
pragmas are used.

Use of this pragma infornis the compiler that all created objects and all computed values have statically known
sizes. The language usages that do not meet this assertion are

* T'IMAGE for integer types

* arrays objects or values of (sub)types with non-static index constraints, or with component subtypes
with non-static index constraints

* array aggregates of an unconstrained type

* catenations (even with statically sized operands)

* collections with non-static sizes

Programs that violate the assertion of this pragma are erroneous.

The effect of this pragma is to use a different, and more efficient, set of compiler protocols for runtime stack
organization and register usage. These variant protocols are described in Appendix P.

F.3.3. Pragma NODYNAMICMULTIDIMlENSIONAL ARRAYSUSED

This pragmz__works on a program library basis._See the-subse.ction-at the beginning of this section fo, Lw SIL
pragmas are used.
Use of this pragma informs the compiler that all declarations of multidimensional array types or objects have

static index constraints [Ada &WM 4.9 (11)1, and that the component subtypes of such arrays; if arrays them-
selves, also have static index constraints. That is, all multidimensional arrays have statically known size. Pro-
grams that violate the assertion of this pragma are erroneous.

The effect of this pragma is to use a special technique, known as bias vectors, in the generated code for the cal-
culation of array indexed component offsets for multi-dimensional arrays. This tcchnique involves building a
data structure that contains some precomputed offsets, and then indexing into that structure. The major advan-
tage of this technique is that few or no multiplication operations need be generated.

F-8 Appendix F of the Ada Reference Manual

The bias vector data structures are allocated as part of elaboration of the constrained array subtype declaration
(or object declaration that implicitly declares such a subtype).

Bias vectors are not used if the array index base type is LONG INTEGER or if pragma PACK applies to the
array.

F.3.4. Pragmas ESTABLISHOPTIMIZEDREFERENCE and ASSUIE OPTIMIZED REFERENCE

These pragmas are used to direct the compiler to generate code that more efficiently references objects in a I
package. This efficiency is achieved by using a base register to address the package objects.

Pragma ESTABLISH OPTIMIZED REFERENCE instructs the compiler to load a base register with the
beginning address of the objects in the designated package, and to access such objects using the base register.
The pragma has the form

pragma ESTABLISHOPTIMIZEDREFERENCE (packagename);

The pragma may appear anywhere within a program unit; the load and subseq'ient usage of the base register
will begin at the point of the pragma appearance. The pragma applies only to the program unit it appears in; it
does not apply to program units nested within that unit.

Pragma ASSUME OPTIMIZED REFERENCE instructs the compiler to assume that the designated
package's beginning address has been loaded into a base register, and to access such objects using the base
register. The pragma has the form

pragma ASSUMEOPTIMIZED REFERENCE (packagename);

The pragma should appear at the beginning of the declarative part of a program unit. The pragma applies only
to the program unit it appears in; it does not apply to program units nested within that unit. It is not necessary
to use this pragma after an instance of pragma ESTABLISH OPTIMIZED REFERENCE; rather, it must be
used in program units that are called from the unit that contains the pragma
ESTABLISH OPTIMIZED REFERENCE. If there are intervening (in terms of calls) units between the unit
containing pragma ESTABLISH OPTIMIZED REFERENCE and the unit desiring to use pragma
ASSUME OPTIMIZED REFERENCE, then- those intervening units must also use pragma
ASSUME OPTIMIZED REFERENCE.

The pragmas apply only to packages that are library units. Only the objects in the specification part of the
package, and within base register range of the package beginning, are accessed by base register.

Only one base register is used by these pragmas, that being-register'12. Thus, th-e pragmas canbe in efcct for

only one package at any given time during execution.

An example of the use of these pragmas:

package GLOBAL VARS is

erd GLOALVARS;

with GLOBAL VARS; use GLOBALVARS;
procedure P is

pragma ESTABLISH OPTIMIZEDREFERENCE (GLOBALVARS);

Appendix F of the Ada Reference Manual F-9

procedure INNER is
pragma ASSUME.OPTIMI ZEDREFERENCE (GLOBAL VARS);

begin

end INNER;
begin

I NNER;

end P;

F.3.5. Pragma INTERFACE SPELLING

This pragma is used to define the external name of a subprogram written in another language, if that external
name is different from the subprogram name (if the names are the same, the pragma is not needed). The
pragma has the form

pragma INTERFACE SPELLING (subprogramname, external name string literal);

The pragma should appear after the pragma INTERFACE for the subprogram. This pragma is useful in cases
where the desired external name contains characters that are not valid in Ada identifiers. For example,

procedure CONNECTBUS (SIGNAL :INTEGER);
pragma INTERFACE (ASSEMBLY, CONNECT_BUS);
pragma INTERFACE-SPELLING (CONNECTBUS, "SCONNECT.BUS");

F.3.6. Pragma SETMACHINE OVERFLOWS FALSEFORANONYMOUS FIXED

This pragma works on a program library basis. See the subsection at the beginning of this section for how such
pragmas are used.

The effect of this pragma is that any fixed point type T of anonymous predefined fixed type (i.e., represented in
16 bits) has the attribute

T'MACHINE OVERFLOWS = FALSE

such that NUMERICERROR is not raised in overflow situations [Ada RPV 4.5.7 (7)].

The result of operations in overflow situations is either the lower or upper bound of the "virtual" predefined
type for T__ da PM 3.5.9 (10)1, this document Section F.1)_dep(:cdingon thIe.direction of - elow. T1ese0
bounds are -32 768 * T'SMLALL and 32 767 * T'SMALL respectively. These bounds will equal T'FIRST and
T'LAST if the range constraint for T is so declared.

Note that this implementation of fixed point types relies on the 1750A fixed point overflow' interrupt being
enabled and not masked; any user exit or customization routines in the Ada runtime executive must not do I
differently.

F-10 Appendix F of the Ada Reference Manual

F.3.7. Prmgma SUBPROGRAM SPELLING

This pragma is used to define the external name of an Ada subprogram. Normally such names are compiler-
generated, based on the program library unit number. The pragma has the form

pragma SUBPROGRAM-SPELLING (subprogram _name [,etemal-na.,nestringliteral]);

The pragma is allowed wherever a pragma INTERFACE would be allowed for the subprogram. If the second
argument is omitted, the subprogram name is used as the external name.

This pragma is useful in cases where the subprogram is to be referenced from another language.

F.4. Implementation-dependent Attributes

None are defined.

F.5. Package SYSTEM

The specification of package SYSTEM is:

package SYSTEM is

type ADDRESS is new INTEGER;
ADDRESS NULL constant ADDRESS := 0;
ADDRESS ZERO : constant ADDRESS:= 0;

type NAME is (MILSTD_1750A);

SYSTEMNAME : constant NAME: = MILSTD_1750A;

STORAGE UNIT : constant := 16;
IEMORY-SIZE : constant:= 64 * 1024;

MIN INT : constant := -2 147 483 647-1;
MAZ INT : constant : = 2 147 483 647;
MAX DIGITS : constant := 9;
MAX MANTISSA : constant := 31;
FINE DELTA : constant := 1.0 / 2.0 ** MAX MANTISSA; _

-TIC. -- Tonstan-:= OTUD0_TO; - - --0G___

subtype PRIORITY is INTEGER range 0..255;

type INTERFACE-LANGUAGE is (ASSEMBLY, BIF, JOVIAL, FORTRAN);

end SYSTEM;

Appendix F of the Ada Reference Manual F-i1

F.6. Representation Clauses

In general, no representation clauses may be given for a derived type. The representation clauses that are

accepted for non-derived types are described by the following:

Length Clause

The compiler accepts three kinds of length clauses, specifying the number of storage units to be reserved for a
collection (attribute designator STORAGE SIZE), the number of storage units to be reserved for an activation
of a task (STORAGE SIZE), or the small for a fixed point type (SMALL). Length clauses specifying object
size for a type (SIZE) are not allowed.

Enumeration Representation Clause

Enumeration representation clauses may only specify representations in the range of the predefined type
INTEGER.

Record Representation Clause

In terms of allowable component clauses, record components fall into three class-s:

* integer and enumeration types that may be represented in 16 bits or less;

" statically-bounded arrays or records composed solely of the above;

* all others.

Components of the "16-bit integer/enumeration" class may be given a component clause that specifies a storage
place at any bit offset, and for any number of bits, as long as the storage place is large enough to contain the
component and does not cross a word boundary.

Components of the "array/record of 16-bit integer/enumeration" class may be given a component clause that
specifies a storage place at any bit offset, if the size of the array/record is less than a word, or at a word offset
otherwise, and for any number of bits, as long as the storage place is large enough to contain the component
and none of the individual integer/enumeration elements of the array/record cross a word boundary.

Components of the "all others" class may only be given component clauses that specify a storage place at a word
offset, and for the number of bits normally allocated for objects of the underlying base type.

Components that do not have component clauses are allocated in storage places beginning at the next word
boundary following the storage place of the last component in the record that has a component clause.

Alignment clauses are not allowed.

F-12 Appendix F of the Ada Reference Manual

F.7. Implementation-dependent Names for Implementation-dependent Components

None are defined.

F.S. Address Clauses

Address clauses are supported for objects that are not constants, for subprogram units, and for interrupt

entries. Address clauses are not supported for package or task units, and in general are not supported for con-

stant objects.

Address Clause for Objects

Address clauses for objects must be static expressions of type ADDRESS in package SYSTEM. Address

clauses for objects do not cause the object to be placed at that address, but do ensure that all references to the

object in the generated code are to that address. Thus, it is the user's responsibility to reserve space for the

object at that address, via 1750A Linker control statements.

Type ADDRESS is a 16-bit signed integer. Thus, addresses in the memory range 16#8000#..16#FFFF# (i.e.,

the upper half of 1750A memory) must be supplied as negative numbers, since the positive (unsigned) interpre-

tations of those addresses are greater than ADDRESS'LAST. To illustrate:

X : INTEGER;
for X use at 16#7FFF#; -- legal

Y : INTEGER;
for Y use at 16#FFFF#; -- illegal

Y: INTEGER;
for Y use at -1; -- legal, equivalent to unsigned 16#FFFF#

The hexadecimal address can be retained, and user computation of the negative equivalent avoided, by use of

the following construct:

ADDR FFFF: constant:= 16#FFFF#-65536;

Y: INTEGER;
for Y use at ADDRFFFF;

Address Clause for Subprogram Units

Address clauses for subprograms must be static expressions of type ADDRESS in package SYSTEM. The code

of the subprogram body will be placed at that address. There is no need for. the user to reserve space for the

subprogram code via the 1750A Linkcr, as in the case for address clauses for objects. . .

Address Clause for Interrupt Entries

Address clauses for interrupt entries do not use type SYSTEM.ADDRESS; rather, the address clause must be a

static integer expression in the range 0..15, naming the corresponding 1750A interrupt.

The following restrictions apply to interrupt entries. The corresponding accept statement must have no formal

parameters and must not be part of a select statement. Direct calls to the entry are not allowed, If any

M I I III

Appendix F of the Ada Reference Manual F- 13

exception can be raised from within the accept statement, the accept statement must include an exception
handler. The accept statement cannot include tasking or delay statements.

When the accept statement is encountered, the task is suspended. If the specified interrupt occurs, executioa of
the accept statement begins. When control reaches end of the accept statement, the special interrupt entry pro-
cessing ends, and the task continues normal execution. Control must again return to the point where the accept
statement is encountered in order for the task to be suspended again, awaiting the interrupt.

There are many more details of how interrupt entries interact with the 1750A machine state and with the Run-
time Executive. For these details, see the Ada 1750,4 Runtime Executive Programmer's Guide.

F.9, Unchecked Conversion

Unchecked conversion is only allowed between values of the same size. In addition, if
UNCHECKED CONVERSION is instantiated with an array type, that type must be statically constrained.
Note also that calls to UNCHECKED CONVERSION-instantiated functions are always generated as inline
calls by the compiler.

F.10. Input-Output

The predefined library generic packages and packages SEQUENTIAL 10, DIRECT 10, and TEXT 1O are
supplied. However, file input-output is not supported except for the standard output file. Any attempt to create
or onen a file will result in USE-ERROR being raised, as will any attempt to perform operations upon the I
standard input file.

TEXT 10 output operations to the standard output file are implemented as output to some visible device for a
given implementation of MIL-STD-1750A. Depending on the implementation, this may be a console, a works-
tation disk drive, simulator output, etc.

The range of the type COUNT defined in TEXT 1O is 0.. LONG INTEGER'LAST.

The predefined library package LOWLEVEL 10 is empty.

In addition to the predefined library units, a package STRING OUTPUT is also included in the predefined
library. This package supplies a very small subset of TEXT 1(5 operations to the standard output file. The
specification is:

package STRINGOUTPUT is

- procedure PUT (ITEM : in STRING), --

procedure PUT-LINE (ITEM: in STRING);

procedure NEWLINE;

end STRING OUTPUT; -

By using the 'IMAGE attribute function for integer and enumeration types, a fair amount of output can be done I
using this package instead of TEXT 10. The advantage of this is that STRING OUTPUT is smaller than
TEXT TO in terms of object code size, and faster in terms of execution speed.

F-14 Appendix F of the Ada Reference Manual

F.I1. Other Chapter 13 Areas

The following language features, defined in [Ada R[Af 13], are supported by the compiler:

* representation atributes [13.7.Z 13.7.31

" unchecked storage deallocation [13.10.1]

Note that calls to UNCHECKEDDEALLOCATION-instantiated procedures are always generated as inline
calls by the compiler.

Change of representation [13.6] and machine code insertions [13.8] are not supported by the compiler. Note
that pramga INTERFACE (BIF) may be used as an alternative to machine code insertions.

F.12. Miscellaneous Implementation-dependent Characteristics

Uninitialized Variables

There is no check to detect the use of uninitialized variables. The effect of a program that refers to the value of
an uninitialized variable is undefined. A cross-reference listing may be of use in finding such variables.

F.13. Compiler System Capacity Limitations

The following capacity limitations apply to Ada programs in the Compiler System:

" the space available for the constants of a compilation unit is 32K words;

" the space available for the static data of a compilation unit is 32K words;

* any single object can not exceed 32K words;

* the space available for the objects local to a subprogram or block is 32K words;

* the names of all identifiers, including compilation units, may not exceed the number of characters
specified by the INPUTLINELENGTH component in the compiler configuration file (see Section
4.1.4);

* the physical size of a sublibrary may not exceed 16384 VAX/VMS blocks.

The--above-limitations are all diagnosed by the-compiler-Mosr-maTbe circumvenred straightforwr-dly by using
separate compilation facilities or by creating new sublibraries.

% I. .

APPENDIX C

T=T PARAMETER

Certain tests in the ACVC make use of inplementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes us-- of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value nust be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIG IDI <1..125 => 'A', 126 => 'I'>
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 <1..125 => 'A', 126 => '21>

Identifier the size of the
maximu input line length with
varying last character.

$BIG ID3 <1. .62 => 'A', 62 => '3',
Identifier the size of the 64..126 => 'A'>
maximum input line length with
varing middle character.

$BIG ID4 <1..62 => 'A', 63 => '4',
Identifier the size of the 64..126 => 'A'>
maxi-ia irput line length with
varying middle character.

$BIG -flT rLIT <1..123 => '0', 124.-125 =>
An integer literal of value 298 '298'>
with encugh leading zeroes so
that it is the size of the
maxiiamn line length.

$BIGREAL LIT <1..120 => '0', 121..126 =>
A universal real literal of '69.OEl'>
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

C-i

$BIG STRING1 <. => fil 2..64 => 'A', 65 =>
A string literal which when f">
catenated with BIG STRING2
yields the image of BIG_IDI.

$BIG STRING2 <1 => I"', 2..63 => 'A', 64 =>
A string literal which when 'I', 65 => f"">
catenated to the end of
BIGSIRING1 yields the image of
BIGIDi.

$BLANFS 106
A sequence of blanks twenty
characters less than the size
of the maxitm= line length.

$CXXNT LAST 2_147_483_647
A universal integer literal
whose value is
T=TIO. CCUxmT LAST.

$F= LDAST 35
A universal integer
literal whose value is
T=IT IO. FIELD' LAST .

$=-.ENAMEWI= BAD q-uPs BADFIIM-~kE_1
An external file nam that
either contains invalid
characters or is too long.

$FILE M*IE _W=flWILDCARD_ aR BADFIfLNAME_2
A e>tnal fIle -nam that
either =ntains a wild card
character or is too long.

$GREAT_THN£_UPATICN 131_072.0
A universal real literal that
lies between CJPATICN 'BASE' LAST
and URATICN' LAST or any value
in the range of DURATICN.

$a= ATEANUTATICN BASE LAST 131_072.0
A univeral real literal that is
greater than CLRATICN'I ASE' LASr.

$ iLLEGAL=IL_FILE NAMEIl ILIEGALFIIENAME_1
An external file name which
contains invalid characters.

C-2

$ILI.EGALXTEAL FIE NAME2 ILLAL FILE NAME2
An external file name which
is too long.

$INT _=mT -32_768
A universal integer literal
whose value is INIEGER'F=RST.

$INTGERLAST 32767
A universal integer literal
whose value is 'EGER'ASI.

$1NTEERLAST PLUS 1 32_768
A universal - integer literal
whose value is INEIER'=LAST + 1.

$LESS _TAN RATION -131_073.0
A universal real literal that
lies betwen URATI0N' BASE' F
and EURATION'FIST or any value
in the range of DURPATION.

$LESS THAN_DURATION BASEFIRST -131-073.0
A universal real literal that is
less than OURATION'BASE'FIPST.

$MAX DIGITS 9
Maxinum digits supported for
floating-point types.

$MAX IN LEN 126
Maximum input line length
permitted by the iniplementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTrA.MAX INT.

SMAXINT _PLUS_1 2147483648
A universal integer literal
whose value is SYST4. MAX INT+1.

$ xMAXLEN2TBASEDULITEAL <1..2 => '2:', 3. 123 =>
A universal integer based '0', 124..126 => '11:'>
literal whose value is 2#11t
with encugh leading zeroes in
the mantissa to be MAX INLN
long.

C-3

$MAX LEN REAL BASED LITERAL <1..3 => '16:', 4..122 =>
A universal real based literal '0', 123..126 => 'F.E:'>
whose value is 16:F.E: with
enxgh leadirg zerves in the
mantissa to be MAXINLEN long.

$MAX STRING LTERAL <1 => "', 2..125 => 'A'
A strirqg literal of size 126 => '"'>
MAX IN LEN, including the quote
ckaracters.

$MIN_INT -2147483648
A universal integer literal
whose value is SYSTEM.MIN I=.

$NAME No_Such Type
A name of a predefined numeric
type other than FLOAT, ==,
SHOFC FLOAT, SHOR INTEGER,
LONGFLOAT, or LONGIUrEX.

$NEG -BASED nT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSIM.MAX INT.

C-4

APPEDLX D

WITI MWN TETS

Scme tests are withdrawn frcm the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons irdicated. A reference of the
form "AI-ddddd" is to an Ada Ccmzrntary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PA 4A LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIS
(OFF) ;"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the A1G.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CCNSTAINT_E3WOR.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators.

A35902C: Line 17's assigrment of the ncmimal upper bound of a
fixed-point type to an object of that type raises
MNSTPAIT_ERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly
raises CNSTRAINTERMR, because its upper bound exceeds that
of the type.

C35904B: The subtype declaration that is expected to raise
CCNSTRA=t'ERROR when its ccpatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMEIC ERROR or CONSIRAINTERROR for reasons not
anticipated by the test.

C35A03E, These tests assmie that attribute 'MANTISSA returns 0 when
& R: applied to a fixed-point type with a null range, but the Ada

Standard doesn't support this assumption.

C37213H: The subtype declaration of SCNS in line 100 is wrongly
expected to raise an exception when elaborated.

037213J: The aggregate in line 451 wrongly raises CCNSTR= _ERRCR.

D-1

T37215C, Various discriminant constraints are wroncgly expected
E, G, H: to be inc=patible with type CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINT ERROR.

C41402A: 'SIORAGESIZE is wrungly applied to an object of an access
type.

C45332A: The tes_ expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFI/' is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACHINEOVERFLWS may still be TRJE.

C45614C: REPORT. IDENTINT has an argument of the wrong type
(LONGITTER) .

E66001D: Wrongly allows either the acceptance or rejection of a
parameterless function with the same identifier as an
enumeration literal; the function must be rejected (see
Coientary AI-00330).

A74106C, A bound specified in a fixed-point subtype declaration
C85018B, lies outside of that calculated for the base type, raising
C87B04B, CONSTRAIl=T ERROR. Errors of this sort occur re lines 37 & 59,
CC1311B: 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they are
legal.

ADlAOlA: The declaration of subtype INrT3 raises CONSTRAINTERROR for
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A: This test expects that an attempt to open the default output
file (after it was closed) with mode INFILE raises NAME ERROR
or USEERROR; by Conentary AI-00048, MODEERROR should be
raised.

D-2

